Gravedad

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

La gravedad es una de las cuatro interacciones fundamentales. Origina la aceleración que experimenta un cuerpo físico en las cercanías de un objeto astronómico. También se denomina interacción gravitatoria o gravitación.

Por efecto de la gravedad tenemos la sensación de peso. Si estamos situados en las proximidades de un planeta, experimentamos una aceleración dirigida hacia la zona central de dicho planeta —si no estamos sometidos al efecto de otras fuerzas—. En la superficie de la Tierra, la aceleración originada por la gravedad es 9.81 m/s², aproximadamente.

Albert Einstein demostró que: «Dicha fuerza es una ilusión, un efecto de la geometría del espacio-tiempo. La Tierra deforma el espacio-tiempo de nuestro entorno, de manera que el propio espacio nos empuja hacia el suelo».[1] Aunque puede representarse como un campo tensorial de fuerzas ficticias.

La gravedad posee características atractivas, mientras que la denominada energía oscura tendría características de fuerza gravitacional repulsiva, causando la acelerada expansión del universo.

Introducción[editar]

Albert Einstein demostró que la gravedad no es una fuerza de atracción, sino una manifestación de la distorsión de la geometría del espacio-tiempo bajo la influencia de los objetos que lo ocupan.

La gravedad es una de las cuatro interacciones fundamentales observadas en la naturaleza. Origina los movimientos a gran escala que se observan en el universo: la órbita de la Luna alrededor de la Tierra, las órbitas de los planetas alrededor del Sol, etcétera. A escala cosmológica es la interacción dominante, pues gobierna la mayoría de los fenómenos a gran escala (las otras tres interacciones fundamentales son predominantes a escalas más pequeñas, el electromagnetismo explica el resto de los fenómenos macroscópicos, mientras que la interacción fuerte y la interacción débil son importantes sólo a escala subatómica).

El término «gravedad» se utiliza también para designar la intensidad del fenómeno gravitatorio en la superficie de los planetas o satélites. Isaac Newton fue el primero en exponer que es de la misma naturaleza la fuerza que hace que los objetos caigan con aceleración constante en la Tierra (gravedad terrestre) y la fuerza que mantiene en movimiento los planetas y las estrellas. Esta idea le llevó a formular la primera teoría general de la gravitación, la universalidad del fenómeno, expuesta en su obra Philosophiae Naturalis Principia Mathematica.

Einstein, en la teoría de la relatividad general hace un análisis diferente de la interacción gravitatoria. De acuerdo con esta teoría, la gravedad puede entenderse como un efecto geométrico de la materia sobre el espacio-tiempo. Cuando cierta cantidad de materia ocupa una región del espacio-tiempo, provoca que éste se deforme. Visto así, la fuerza gravitatoria no es ya una "misteriosa fuerza que atrae", sino el efecto que produce la deformación del espacio-tiempo —de geometría no euclídea— sobre el movimiento de los cuerpos. Según esta teoría, dado que todos los objetos se mueven en el espacio-tiempo, al deformarse éste, la trayectoria de aquéllos será desviada produciendo su aceleración, que es lo que denominamos fuerza de gravedad.

Mecánica clásica: ley de la gravitación universal de Newton[editar]

En la teoría newtoniana de la gravitación, los efectos de la gravedad son siempre atractivos, y la fuerza resultante se calcula respecto del centro de gravedad de ambos objetos (en el caso de la Tierra, el centro de gravedad es su centro de masas, al igual que en la mayoría de los cuerpos celestes de características homogéneas). La gravedad newtoniana tiene un alcance teórico infinito; pero la fuerza es mayor si los objetos están próximos, y mientras se van alejando dicha fuerza pierde intensidad. Además Newton postuló que la gravedad es una acción a distancia (y por tanto a nivel relativista no es una descripción correcta, sino sólo una primera aproximación para cuerpos en movimiento muy lento comparado con la velocidad de la luz).

La ley de la gravitación universal formulada por Isaac Newton postula que la fuerza que ejerce una partícula puntual con masa m_1 sobre otra con masa m_2 es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia que las separa:

\mathbf{F}_{21} = -G \frac {m_{1}m_{2}} {|\mathbf{r_2}-\mathbf{r_1}|^2}\mathbf{\hat{u}}_{21}

donde \mathbf{\hat{u}}_{21} es el vector unitario que dirigido de la partícula 1 a la 2, esto es, en la dirección del vector \mathbf{r}_{21}=\mathbf{r}_2-\mathbf{r}_1, y G \,\! es la constante de gravitación universal, siendo su valor aproximadamente 6,674 × 10−11 N·m²/kg².

Por ejemplo, usando la ley de la gravitación universal, podemos calcular la fuerza de atracción entre la Tierra y un cuerpo de 50 kg. La masa de la Tierra es 5,974 × 1024 kg y la distancia entre el centro de gravedad de la Tierra (centro de la tierra) y el centro de gravedad del cuerpo es 6378,14 km (igual a 6 378 140 m, y suponiendo que el cuerpo se encuentre sobre la línea del Ecuador). Entonces, la fuerza es:

F = G \frac {m_{1} m_{2}} {d^2} = 6.67428 \times 10^{-11} \frac {50 \times 5. 974 \times 10^{24}} {6378140^2} = 490 .062 \text{N}

La fuerza con que se atraen la Tierra y el cuerpo de 50 kg es 490.062 N (Newtons, Sistema Internacional de Unidades), lo que representa 50 kgf (kilogramo-fuerza, Sistema Técnico), como cabía esperar, por lo que decimos simplemente que el cuerpo pesa 50 kg.

Dentro de esta ley empírica, tenemos estas importantes conclusiones:

  • Las fuerzas gravitatorias son siempre atractivas. El hecho de que los planetas describan una órbita cerrada alrededor del Sol indica este hecho. Una fuerza atractiva puede producir también órbitas abiertas, pero una fuerza repulsiva nunca podrá producir órbitas cerradas.
  • Tienen alcance infinito. Dos cuerpos, por muy alejados que se encuentren, experimentan esta fuerza.
  • La fuerza asociada con la interacción gravitatoria es central.
  • A mayor distancia menor fuerza de atracción, y a menor distancia mayor la fuerza de atracción.

A pesar de los siglos, hoy sigue utilizándose cotidianamente esta ley en el ámbito del movimiento de cuerpos incluso a la escala del Sistema Solar, aunque esté desfasada teóricamente. Para estudiar el fenómeno en su completitud hay que recurrir a la teoría de la Relatividad General.

Problema de los dos cuerpos y órbitas planetarias[editar]

La ley de Newton aplicada a un sistema de dos partículas o dos cuerpos, cuyas dimensiones físicas son pequeñas comparadas con las distancias entre ellos, lleva a ambos cuerpos describirán una curva cónica (elipse, parábola o hipérbola) respecto a un sistema de referencia inercial con origen el centro de masa del sistema, que además coincidirá con uno de los focos de la cónica. Si la energía total del sistema (energía potencial más energía cinética de los cuerpos) es negativa, entonces las curvas cónicas que dan la trayectoria de ambos cuerpos serán elipses. Ese resultado fue la primera deducción teórica de que los planetas reales se mueven en trayectorias que con bastante aproximación son elipses, y permitió explicar diversas observaciones empíricas resumidas en las leyes de Kepler.

Problema de los tres cuerpos[editar]

De acuerdo con la descripción newtoniana, cuando se mueven tres cuerpos bajo la acción de su campo gravitatorio mutuo, como el sistema Sol-Tierra-Luna, la fuerza sobre cada cuerpo es justamente la suma vectorial de las fuerzas gravitatorias ejercidas por los otros dos. Así las ecuaciones de movimiento son fáciles de escribir pero difíciles de resolver ya que no son lineales. De hecho, es bien conocido que la dinámica del problema de los tres cuerpos de la mecánica clásica es una dinámica caótica.

Desde la época de Newton se ha intentado hallar soluciones matemáticamente exactas del problema de los tres cuerpos, hasta que a finales del siglo XIX Henri Poincaré demostró en un célebre trabajo que era imposible una solución general analítica (sin embargo, se mostró también que por medio de series infinitas convergentes se podía solucionar el problema). Sólo en algunas circunstancias son posibles ciertas soluciones sencillas. Por ejemplo, si la masa de uno de los tres cuerpos es mucho menor que la de los otros dos (problema conocido como problema restringido de los tres cuerpos), el sistema puede ser reducido a un problema de dos cuerpos más otro problema de un solo cuerpo.

Mecánica relativista: Teoría general de la relatividad[editar]

Representación esquemática bidimensional de la deformación del espacio-tiempo en el entorno de la Tierra.

Albert Einstein revisó la teoría newtoniana en su teoría de la relatividad general, describiendo la interacción gravitatoria como una deformación de la geometría del espacio-tiempo por efecto de la masa de los cuerpos; el espacio y el tiempo asumen un papel dinámico.

Según Einstein, no existe el empuje gravitatorio; dicha fuerza es una ilusión, un efecto de la geometría. Así, la Tierra deforma el espacio-tiempo de nuestro entorno, de manera que el propio espacio nos empuja hacia el suelo. Una hormiga, al caminar sobre un papel arrugado, tendrá la sensación de que hay fuerzas misteriosas que la empujan hacia diferentes direcciones, pero lo único que existe son pliegues en el papel, su geometría.[1]

La deformación geométrica viene caracterizada por el tensor métrico que satisface las ecuaciones de campo de Einstein. La "fuerza de la gravedad" newtoniana es sólo un efecto asociado al hecho de que un observador en reposo respecto a la fuente del campo no es un observador inercial y por tanto al tratar de aplicar el equivalente relativista de las leyes de Newton mide fuerzas ficticias dadas por los símbolos de Christoffel de la métrica del espacio-tiempo.

Cálculo relativista de la fuerza aparente[editar]

En presencia de una masa esférica, el espacio-tiempo no es plano sino curvo, y el tensor métrico g que sirve para calcular las distancias viene dado en coordenadas usuales